
Published online 25 May 2020 Nucleic Acids Research, 2020, Vol. 48, Web Server issue W403–W414
doi: 10.1093/nar/gkaa412

ASAP 2020 update: an open, scalable and interactive
web-based portal for (single-cell) omics analyses
Fabrice P.A. David1,2,3, Maria Litovchenko1,2, Bart Deplancke1,2,* and Vincent Gardeux 1,2,*

1Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015
Lausanne, Switzerland, 2Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland and 3BioInformatics
Competence Center, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Received February 24, 2020; Revised April 12, 2020; Editorial Decision April 29, 2020; Accepted May 21, 2020

ABSTRACT

Single-cell omics enables researchers to dissect bio-
logical systems at a resolution that was unthinkable
just 10 years ago. However, this analytical revolution
also triggered new demands in ‘big data’ manage-
ment, forcing researchers to stay up to speed with in-
creasingly complex analytical processes and rapidly
evolving methods. To render these processes and
approaches more accessible, we developed the web-
based, collaborative portal ASAP (Automated Single-
cell Analysis Portal). Our primary goal is thereby to
democratize single-cell omics data analyses (scRNA-
seq and more recently scATAC-seq). By taking ad-
vantage of a Docker system to enhance reproducibil-
ity, and novel bioinformatics approaches that were
recently developed for improving scalability, ASAP
meets challenging requirements set by recent cell at-
lasing efforts such as the Human (HCA) and Fly (FCA)
Cell Atlas Projects. Specifically, ASAP can now han-
dle datasets containing millions of cells, integrating
intuitive tools that allow researchers to collaborate
on the same project synchronously. ASAP tools are
versioned, and researchers can create unique access
IDs for storing complete analyses that can be repro-
duced or completed by others. Finally, ASAP does
not require any installation and provides a full and
modular single-cell RNA-seq analysis pipeline. ASAP
is freely available at https://asap.epfl.ch.

INTRODUCTION

Single-cell omics is a recent field that started to bloom in
2013–15 with the advent of commercially available single-
cell RNA-seq (scRNA-seq) protocols (1,2). At its origin,
platforms could process hundreds of cells at a time, whose
corresponding transcriptomes could still be handled by tra-

ditional bulk RNA-seq bioinformatics tools. In a very short
amount of time, however, sample sizes exploded (3). This
is exemplified by recent efforts aiming to create ‘cell at-
lases’ for entire tissues (4,5) or organisms (6–9) at resolu-
tions and scales that are more difficult to handle compu-
tationally (>100k or even millions of cells and thus tran-
scriptomes). As the field evolves, so are the underlying an-
alytical approaches and tools, making it increasingly more
difficult to see ‘the forest through the methodological trees’
and to select the proper analysis pipeline (10,11). The lat-
ter is also in part dictated by the size of the focal dataset,
with powerful tools now emerging that aim to handle single-
cell omics datasets in a scalable manner (12). However, these
tools have yet to take firm root in the field, especially with re-
searchers who have so far been accustomed to working with
smaller-sized datasets (∼1–10k cells). The urgency for these
tools to become widely implemented is illustrated by recent
cell atlasing projects, which clearly demonstrate the need for
both scalable computing power and analytical approaches
(10). Finally, novel single-cell omics approaches such as
single-cell ATAC-seq (scATAC-seq) are rapidly emerging,
posing additional problems in terms of data management
and integration (13).

To reduce the complexity of single-cell omics analyses, we
developed ASAP (14), enabling standardized analyses that
can be run in minutes by any user without requiring sig-
nificant computing power. The entire, canonical scRNA-
seq pipeline is available in ASAP, and can be summarized
into 8 consecutive steps: (i) filtering low quality cells and
lowly expressed genes, (ii) normalization across cells, (iii)
scaling and covariate removal (such as read depth, mi-
tochondrial content, etc.), (iv) computing highly variable
genes of interest, (v) performing dimension reduction us-
ing PCA followed by high dimensional methods such as
t-SNE or UMAP, (vi) clustering of cells to identify sub-
populations, (vii) differential expression analysis to identify
marker genes of identified subpopulations and (viii) func-
tional enrichment of these marker genes into pathways or
cell types. Of course, all these steps are parametrizable, and

*To whom correspondence should be addressed. Tel: +41 216930983; Email: vincent.gardeux@epfl.ch
Correspondence may also be addressed to Bart Deplancke. Email: bart.deplancke@epfl.ch

C© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

http://orcid.org/0000-0001-8954-2161
https://asap.epfl.ch

W404 Nucleic Acids Research, 2020, Vol. 48, Web Server issue

we acknowledge that it may be difficult to find one fixed
pipeline that will fit all dataset types (10). A trained bioin-
formatician tends to therefore tune the parameters to the
dataset of interest. Given this, ASAP allows users to choose
from a panel of tools, thereby providing guiding tutorials to
help researchers with their selection of the correct tools or
parametrization for their datasets.

Here, we report a major ASAP upgrade, with several sub-
stantial improvements such as a completely remodeled user
interface, a fully Dockerized (15,16) system, and the inter-
nal implementation of the .loom file format. We chose this
format since it substantially increased the scalability of the
tools used to perform out-of-RAM computations, allow-
ing the analysis of high-dimensional datasets of virtually
any size. This new format also enhances the communication
between existing portals such as SCope (17), the Human
Cell Atlas (7), and many others that are adopting the same
file format for storing complete analyses into one single
file.

RESULTS AND METHODS

Implementation overview

ASAP is now using the Docker technology (15,16) to make
the whole platform modular and versioned (Figure 1).
Docker containers separate the main website (the Ruby-on-
rails web server code) from the running jobs (R, Python and
Java bioinformatics tools), enabling jobs to run on a differ-
ent machine than the main server hosting the web applica-
tion. Moreover, this architecture allows the asap run con-
tainer (hosting the versioned bioinformatics tools) to be dis-
patched to many external machines for enhanced comput-
ing power, and maybe in the future, to the cloud.

Since the single-cell community is very active, and new
methods appear or are upgraded almost on a monthly
basis, this architecture allows an easier versioning of the
portal with each asap run container encapsulating its own
tool versions. This will enhance reproducibility and retro-
compatibility with previous studies. The Dockerized archi-
tecture also keeps all tool versions fixed for a given global
version of ASAP, thus all listed tools are embedded at a
fixed version and correspond to a single versioned Docker.

.loom files

.loom files represent a standardized file format for
storing/handling single-cell datasets. It was proposed
and developed by the Linnarsson Lab (http://loompy.org/).
.loom files are HDF5 (Hierarchical Data Format) files fol-
lowing certain constraints in terms of group/dataset names
and types. They allow for very efficient computation and
access to row/columns of datasets, thus greatly enhancing
the scalability of computational methods. The matrices can
be chunked, which allows out-of-RAM computation by
processing the data ‘chunk by chunk’. The new version of
ASAP now internally handles .loom files for every project.
When a user submits a dataset (plain text, archive, 10×,
etc.), it is automatically transformed into a .loom file during
the parsing step. This step also computes basic statistics
(number of detected genes, ratio mitochondrial content,

depth, etc.) that are immediately added to the parsed .loom
file and available downstream, such as for example when
coloring plots during visualization.

Web application

The ASAP web application is developed with Ruby-on-
Rails (RoR). The backend is implemented as a PostgreSQL
relational database. The frontend uses different JavaScript
libraries and is set to enable front-end scalability with big
datasets. Specifically, (i) scattergl plots from plotly.js (18)
to render dimension reduction plots scalable; (ii) pako-
inflate.js (https://github.com/nodeca/pako) to compress big
integer arrays between the client and the server and (iii)
an adapted version of JQuery (https://jquery.com/) file in-
put for scalable file uploads. Other important javascript li-
braries that are used include Cytoscape.js (19,20) to gener-
ate a graphical display of the analysis pipeline composition
or of Jquery autocomplete for gene selection in the visual-
ization tool.

As mentioned previously (see Figure 1), the ASAP web
application runs in a Docker container called asap web. To-
gether with other containers for the (i) websockets (Cable,
Redis containers), (ii) PostgreSQL server and (iii) Puma web
server, they are embedded in a docker-compose that guar-
antees independence with respect to the hosting system and
that could facilitate further migration / deployment of the
system.

Reproducibility

The ASAP server incorporates a versioning system that en-
sures full reproducibility of the analyses that are carried out
on the web application. This release handles new projects
and retro-compatibility of old projects starting from ver-
sion 4 (v4). When starting a project, users have the option
to use the stable version of their choice (i.e. v4 or v5 at the
moment).

Version stability is enabled by two key components
of the system: (i) all external (project-independent) data
are stored in a versioned PostgreSQL relational database
asap data vN; and (ii) all scripts and executables are in-
stalled with the necessary dependencies in an r-base docker
container asap run:vM that is available on Dockerhub
(https://hub.docker.com/r/fabdavid/asap run/tags).

Note that for a given global ASAP version, versions of
the docker container and of the relational database M and
N can be different, since the database or the docker con-
tainer are not necessarily updated each time.

For every run, we also provide the user with the ex-
act list of commands that was used to produce the output
(using the Docker module). Therefore, all steps are com-
pletely reproducible, and a default pipeline can be read-
ily implemented using Docker and the scripts generated by
ASAP. A global script is also dynamically generated for
each project, so users can reproduce their complete anal-
ysis locally on their machine/server. The script loads the
right version of the docker container and of the relational
database and runs the whole pipeline, as designed by the
users.

http://loompy.org/
https://github.com/nodeca/pako
https://jquery.com/
https://hub.docker.com/r/fabdavid/asap_run/tags

Nucleic Acids Research, 2020, Vol. 48, Web Server issue W405

Figure 1. ASAP architecture. The ASAP application is a docker-compose-based Ruby-on-Rails application. ASAP implements web-sockets (using Redis
and Cable containers) for an interactive display of results at the client end. Analyses launched by users are submitted to a scheduler that will run third
party software (Python, R, Java) in versioned docker containers ASAP run:vM, enabling scalability and reproducibility of the platform. The scheduler
also ensures that the number of cores that are used on the machine and the level of RAM used on the machine are not exceeding hardware capacities. The
ASAP core database stores users, projects and job stats (for benchmarking the tools) and is thus not versioned. A versioned ASAP data vN (currently
v5) database stores external public data on genes, gene sets and future ontologies. Results of analyses are written on a fast-access disk (NVME) shared by
the Ruby-on-Rails and the ASAP run:vM docker containers. Projects that are not accessed for a long period are automatically saved on an object storage
system (through a CRON job) for saving space on the fast access NVME disk.

Execution of analyses

On the ASAP server, the different analysis scripts and exe-
cutables are run within the asap run vN docker containers
by a scheduler that evaluates if the system can accept a new
analysis at a given time. The scheduler assesses the status of
the system (checking the load on the machine and the num-
ber of free CPUs). For each analysis, the amount of RAM
required, and the execution time are monitored and stored;
this information is then available to the users through the
interface.

Operations requiring a minimal amount of resources,
such as unarchiving projects, are directly launched (with-
out waiting) on a queue through DelayedJob, a RoR mod-
ule that allows to run a piece of code asynchronously.

Referencing and searching ASAP projects

Identifiers from GEO (21) or ArrayExpress (22) can be as-
sociated manually to an ASAP project. If users publish
the results of an ASAP analysis, they can also provide the
PubMed ID of the article (at the same time as setting the
project as ‘public’). If a project is loaded from the Human
Cell Atlas (HCA) Data Coordination Platform (DCP), then
GEO and ArrayExpress identifiers are automatically asso-
ciated to the ASAP project. From these identifiers (assigned
manually or automatically), information from GEO, Array-
Express and BioProject (23) (mainly literature references,
description and identifiers) is automatically extracted and
associated to the ASAP project.

In addition, an instance of SunSpot/SolR runs on the
RoR application and provides an efficient search engine to

retrieve lists of projects that are associated with any GEO,
ArrayExpress or BioProject project, based on identifiers or
free-text descriptions.

Input

ASAP can handle read/UMI count matrices in several for-
mats: (i) plain-text files (compressed or not), (ii) archives
of text files (compressed or not), (iii) .loom files or (iv)
.h5 files produced by the 10× CellRanger pipeline (https:
//github.com/10XGenomics/cellranger). When the data fin-
ishes uploading on the server, ASAP starts to parse the file
and shows a snapshot (preview) of the dataset (10 first rows,
10 first columns) as well as cell/gene names (Figure 2). This
allows the user to change some parsing options, such as the
separator or the column id containing the gene names, with-
out having to re-upload the dataset.

Users can also choose to create a new project from data
hosted by the HCA DCP. This feature uses an API provided
by the HCA (Matrix Service API) to query the available
datasets. The user can choose specific datasets for import
into ASAP, and the HCA API will automatically generate
a .loom file containing all selected cells (Figure 3). Finally,
a new project is created on ASAP with the imported .loom
file, with which the user can start analysis and visualization.

Internally, all inputs are transformed into .loom files as a
common format for all steps. Of course, the users can down-
load the .loom files for their projects and also load them into
R (using loomR, https://github.com/mojaveazure/loomR)
or Python (using loompy, http://loompy.org/). Of note, since
.loom files are essentially normed HDF5 files, they can po-

https://github.com/10XGenomics/cellranger
https://github.com/mojaveazure/loomR
http://loompy.org/

W406 Nucleic Acids Research, 2020, Vol. 48, Web Server issue

Figure 2. Dataset preview after its upload in ASAP. After uploading a file (of any type), ASAP shows a preview of the main count matrix (10 first
rows/columns), as well as genes and cell names. It also shows an icon with the type of file that is recognized automatically. Therefore, the user has the
possibility to change the parsing options if needed (delimiter, header, . . .). In this page, the user can name the project, choose an organism from the ∼500
organisms available from Ensembl, and choose the version to run on (here, v4 is the latest stable version (default) and v5 is still in beta).

Nucleic Acids Research, 2020, Vol. 48, Web Server issue W407

Figure 3. Dataset download from the Human Cell Atlas Matrix Service API. Users can query the Matrix Service API of the Human Cell Atlas (HCA)
from the ASAP ‘New Project’ page. They will see a list of projects from which the Matrix Service can generate count matrices in the form of .loom files
(.fastq and other raw sequencing files are automatically filtered out). The user can then choose a project and the HCA API will automatically send a .loom
file to ASAP. The latter file will be parsed automatically, thus creating a ‘ready to analyze’ project in ASAP. Importantly, all metadata sent from the HCA
are automatically imported along with the .loom file, and will be readily available in ASAP (such as sequencing platform, tissue of origin, etc.).

W408 Nucleic Acids Research, 2020, Vol. 48, Web Server issue

Figure 4. Interactive cell filtering step enables users to set various thresholds for QC. The cell filtering step features interactive plots for filtering out outlier
cells that do not pass certain quality controls (QC). In all panels, a point is a cell. Of note, when a threshold is selected in one of the five panels, all other
panels are automatically refreshed so the user can see the retained cells (green) and the ones that were filtered out (grey). A recap of the final number
of selected vs. filtered out genes is available in the top bar. (A) Number of UMI/read counts per cell (sorted in descending order). This plot is similar to
the plot generated by CellRanger in the 10x pipeline. Users can select a minimum number of UMI/reads per cell. (B) Number of UMIs/Read counts vs
number of detected genes. (C). Ratio of reads that maps to mitochondrial genes (vs all mapped reads). This feature uses the Ensembl database to know
on which chromosome the genes are mapping, so only genes that are mapped to our Ensembl database are considered. (D, E) Similar to C. but using the
biotype of the genes from Ensembl to know if the reads map to a protein-coding gene (D), or to a ribosomal gene (E).

tentially be loaded with any other programming language
as well.

Ensembl and gene set database

In its last version (v5), ASAP incorporates information
from the Ensembl (24) ‘vertebrates’ database v54 to v99
and from Ensembl ‘genomes’ v5 to v46. The ASAP data v5
database contains 16 734 890 genes with unique Ensembl
identifiers for 551 different species. During file parsing, all
genes are mapped to the database version chosen by the
user (v4 or v5), with the latest stable one always being pre-
selected. This mapping is not necessary for most of the
steps included in ASAP, but can provide additional infor-
mation in the result tables, or when hovering on the dynamic
plots. It is mostly needed during the last step of the analysis
(cell type annotation/functional enrichment), when ASAP
needs to relate differentially expressed genes (or marker

genes) to gene sets such as GO (25), KEGG (26), Drugbank
(27) or cell type annotation databases (28–30).

Available tools, bioinformatics scripts and executables

Since the initial implementation of ASAP, several tools were
added, and obsolete tools were removed for this major up-
grade. Currently, ASAP hosts tools in Python, R, and Java.

The parsing and filtering steps are performed in Java,
which we found to be both much faster than R or Python
as well as scalable to any dataset (implemented to take ad-
vantage of the .loom format and the chunking of the count
matrices). In addition, for the Cell Filtering step, we im-
plemented dynamic plots for selecting the best thresholds
according to major QC metrics: number of detected genes,
number of UMIs/reads, ratio of reads mapping to protein-
coding genes, ratio of mitochondrial reads, and ratio of ri-
bosomal reads (Figure 4). The user can see the plots, select

Nucleic Acids Research, 2020, Vol. 48, Web Server issue W409

Figure 5. Calculation and interactive visualization of Highly Variable Genes and M3Drop. Different methods in ASAP are available to select highly variable
genes. All methods produce an interactive plot where the user can hover the cells to see their characteristics (rectangle box tooltip). Here, we see the output
of two methods. On the left panel, highly variable genes are calculated from Seurat (v2) using the Brennecke et al. method (50). On the right panel is the
output of the M3Drop method, more specifically the Depth-Adjusted Negative Binomial (DANB) model, which is tailored for datasets quantified using
unique molecular identifiers (UMIs).

the best thresholds for each of them, and visualize the re-
sulting number of filtered cells interactively, prior to valida-
tion, which will produce a novel .loom file filtered according
to the different thresholding parameters.

The highly variable gene calculation is using tools from
three packages: M3Drop (31), Seurat (32) and Scanpy (12).
Of note, only the one from Scanpy is scalable to >100k cells.
Also, for these methods, the user is able to see the result-
ing curve and highlight genes of interest by hovering on the
cell (Figure 5). In the subsequent visualization step, PCA
(Incremental PCA) is implemented in Python and is paral-
lelized and scalable. The UMAP (33) and t-SNE (34) meth-
ods from Seurat are implemented as well and are scalable
when run on the results of the PCA. A parallelized version
of t-SNE was also added from the Scanpy package in ASAP
v5.

Many clustering methods are implemented, mostly in R
(Seurat, SC3 (35), k-means) and should be run on the results
of the PCA for scalability purposes. Similarly, many differ-
ential expression methods were implemented in R (Seurat,
limma (36), DESeq2 (37)) or re-implemented by us in Java
for the purpose of scalability (Wilcoxon-ASAP). Only Seu-
rat and our homemade Wilcoxon methods are scalable.

Finally, we have also developed in Java the functional en-
richment step using a simple Fisher’s Exact Test, thereby
considering the correct background for not inflating the
resulting P-values. This method is scalable as well to any
dataset.

Outputs

For most steps, the main output is a newly annotated .loom
file. For example, when generating a dimension reduction
output, the initial .loom file is modified with an additional
column attribute containing the ‘cells vs. components’ re-
sult matrix. In addition, the user can visualize this data di-

rectly in the browser as an interactive plot. Internally, the
server will extract the column attributes from the .loom file
and generate a JSON file that will be sent to the client and
that can be visualized using plotly.js scattergl. The WebGL
version was chosen because it allows the plotting of millions
of cells in a timely manner.

Different steps have different outputs. For some steps,
such as detecting highly variable genes, the output is a fil-
tered .loom file and a dynamic plot showing the interpola-
tion that was produced during the calculation. Other steps
such as the differential expression or the functional enrich-
ment steps produce sorted tables of statistically significant
genes/gene sets. These tables have dynamic links to external
databases such as GO (25) or Ensembl (24).

The main visualization step is the dimension reduction
(using PCA, t-SNE (34) or UMAP (33)). This step allows
the user to visualize the dataset in 2D or 3D. The 2D view
can be tuned in different ways. First, the user can color the
cells according to external metadata (such as sex, library
type, depth, batch etc.), clustering results, or gene expres-
sion (Figure 6). The plot is also dynamic, so the user can
select cells of interest to create new metadata on which ad-
ditional operations can be performed, such as a novel dif-
ferential expression calculation. Finally, the user can also
annotate the clusters according to marker genes (with a cell
type for example), either from this view or directly from the
‘Marker Gene’ view in the differential expression step.

Estimation of time and RAM for each tool

With this new version, we developed a novel tool to pre-
dict the computing time and maximum RAM that will be
required by a job, before running it. To achieve this, we
store certain characteristics of jobs that were run by users
in a separate versioned database. These include the size of
the dataset (number of cells/rows) that was used as input

W410 Nucleic Acids Research, 2020, Vol. 48, Web Server issue

Figure 6. UMAP visualization of an HCA public project involving 780k cells with coloring options. After dimension reduction, the user can see 2D and
3D plots of the dataset. Here, we show an ASAP project that was created using the HCA Matrix service feature (see Figure 3) involving ∼780k cells from
human bone marrow + cord blood. The pipeline was run until the UMAP step which is what is visualized in the top and bottom panels. In each panel,
on the right, we opened the ‘Controls’ view which allows the user to change the appearance of the plot (size of the points, colors, etc..) and to manage
any clustering results (and eventually annotate clusters). (A) Here, we show coloring by the number of detected genes. This shows a region which seems to
have much more detected/expressed genes which can be a biological result or may represent doublets. (B) Here, the cells are colored using an annotation
that was imported from the HCA: ‘derived organ parts ontology’. We can clearly see the coloring of the two organ parts that compose the dataset: bone
marrow and cord blood, which highlights a need for better integration of both datasets. One way would be to use Seurat or MNN methods to remove the
batch effect between the two organ parts, this is currently in development (see Discussion).

and the time/RAM that was required by the job, provid-
ing the run was successful. Currently, the prediction is only
made based on the size of the dataset, but in the future, we
may consider adding method parameters as well (in case
they have a strong effect on the overall computing time and
RAM usage predictions). We use two simple linear mod-
els that are trained on these datasets for every tool that is
present in ASAP: (i) time ∼ nbcells * nbgenes and (ii) ram
∼ nbcells * nbgenes. These models are recomputed daily us-

ing a CRON task and are stored as .Rdata files for fast pre-
diction in the UI.

Project sharing

A key feature of our upgraded ASAP web application is
the interactivity and collaboration possibilities. To imple-
ment this, we established a project sharing system, allow-
ing concurrent access to the same project. Users can share

Nucleic Acids Research, 2020, Vol. 48, Web Server issue W411

their projects with other ASAP users (or send an email to
a novel user who will need to register) to allow accessing
the same project simultaneously. We set up right permis-
sions, so that the owner of a project can control his/her
projects in terms of visibility, modification, and further
sharing. There is also the possibility to render a project
public, or to clone a project. Public projects are associated
with a unique ASAP-ID that can be listed in a publication
and that can be used for enhanced reproducibility in pub-
lished papers. Symmetrically, the PMID of the published
work can be entered in the details of the ASAP project
and the reference will then be displayed on the project
page.

Once a project is open, any change in the status of anal-
yses is transmitted to the user through Websockets (Active-
Cable in Ruby-on-Rails). This feature enables interactive,
collaborative projects, since any modification to a project
by any of the sharing users is indicated to the others in real
time.

DISCUSSION AND FUTURE IMPLEMENTATIONS

Single-cell omics technologies are increasingly applied in
both biological as well as clinical research to identify new
cell types and to uncover cellular dynamics during de-
velopment or disease (e.g. tumor heterogeneity). Conven-
tional pipelines tend to require hours/days of work by
a trained bioinformatician to deliver meaningful results.
ASAP’s main goal is to aid with the interpretation of these
data since the whole pipeline can be run in minutes, provid-
ing on-the-go visualization, identification of new cell or dis-
ease populations by clustering, differential expression anal-
ysis and enrichment. With ASAP, we strive to build a cen-
tralized platform to store single-cell projects and their com-
plete analyses in a shareable and reproducible fashion. The
interface of ASAP is designed to be user-friendly and pro-
vides versatility with a library of state-of-the-art tools that
are documented. Tutorials thereby guide the user through
the different steps of the analysis. Users can easily upload
their dataset and readily start working with it through in-
teractive plots and output tables without previous analysis
experience.

Given the desire of the research community at large to
render single-cell analyses more accessible, several other
interactive visualization tools or platforms have been de-
veloped in parallel (38). Building on a recent pre-print
overviewing these tools (38), we compared the new version
of ASAP (2020) presented in this manuscript to the orig-
inal one (ASAP 2017) (14), and to the other state-of-the
art tools that are currently available (see Table 1). Here,
we mostly focused on tools with a web interface, thus dis-
regarding (i) software such as the BioTuring Single-Cell
Browser (Bbrowser) or the Loupe cell browser, and (ii)
packages such as Seurat (32) or scanpy (12). Other por-
tals, such as the Single-Cell Expression Atlas (39) are only
meant to visualize public datasets, and thus are not designed
for user-specific datasets. Conversely, we can also mention
two Galaxy servers that simplify the processing pipeline but
do not support an interactive visualization of the results:
(a) a common server providing a single-cell analysis work-

flow (https://singlecell.usegalaxy.eu/), (b) and another one
specifically designed for the analysis of data from the Hu-
man Cell Atlas initiative (https://humancellatlas.usegalaxy.
eu/). The latter is connected to the HCA Matrix service to
import datasets, and relies on the UCSC Cell Browser (Ta-
ble 1) or the Single-cell Expression Atlas (39) for visualiza-
tion.

As we can see in Table 1, ASAP is amongst the first por-
tals that are directly linked to the Human Cell Atlas (7).
In addition, most portals are in essence visualization tools
that require external pipelines to analyze a dataset, which
can then be visualized in the respective portal (see ‘NO pre-
computed results’ in Table 1). Few portals therefore sup-
port a complete end-to-end analysis of the data within a
web user interface, and the ones that do tend to require
a local or cloud installation. In contrast, and as indicated
in (38): ‘ASAP is a comprehensive hosting platform and as
such it does not require a local or cloud installation’. Con-
sequently, and contrary to most available portals, ASAP
users can perform all the desired analyses directly within
the portal, and do not have to consider installation prereq-
uisites. Moreover, given ASAP’s multi-user functionalities,
users can share their analysis projects with others in an in-
teractive and modular fashion, which is currently unique to
ASAP (see Table 1, ‘Sharing system’).

We are also currently working with the Fly Cell Atlas
(FCA) consortium (https://flycellatlas.org/) to generate a
central repository for atlas-like initiatives. In particular, we
are collaborating with the Scope (17) portal to develop new
methods for crowd annotation of clusters into cell types.
Indeed, we believe that the next important demand in the
single-cell field will be the ability to implement accurate cell
annotations (40,41). Currently, this is still a great, outstand-
ing challenge that requires hours of manual annotation and
literature review. To address this, we plan to use the available
user base of ASAP and SCope to create a crowd-based an-
notation of cells though an individual curation and voting
system, thereby reinforcing correct cluster annotations. This
will lead to the creation of a public database that will record
cell identity features (such as marker genes) from personal
projects as well as from those hosted by atlas-like initiatives
(such as the HCA or the FCA). Thereafter, we plan to use
this database for the interactive and automated annotation
of cells.

Finally, we would like to point out that scATAC-seq
datasets from 10x (CellRanger output) can in principle also
be loaded into ASAP. For now, they can only be processed
with the same scRNA-seq pipeline, i.e. no specific methods
have so far been added such as cisTopic (42) or other motif
enrichment analysis tools. However, the user can still per-
form UMAP/t-SNE and/or clustering, which can already
be insightful. This shows the modular capacity of ASAP,
which potentially offers a platform that will be able to in-
clude a more specific scATAC-seq data analysis workflow
in the future.

We also plan to add an integration feature with the goal of
integrating datasets and of correcting for batch effects. We
are aware of existing techniques that support such integra-
tion, such as MNN (43) or Seurat (32,44), and are bench-
marking them on high-dimensional datasets to select the
most relevant method.

https://singlecell.usegalaxy.eu/
https://humancellatlas.usegalaxy.eu/
https://flycellatlas.org/

W412 Nucleic Acids Research, 2020, Vol. 48, Web Server issue

Table 1. Overview of state-of-the-art web portals supporting single-cell RNA-seq data analysis and interactive visualization. Two versions of ASAP were
compared to state-of-the-art tools. Docker indicates whether a docker image with the tool is provided by the developers. HCA: Human Cell Atlas. Bench-
marking tools: The ability to monitor all the tools on the platform for computing time and/or RAM usage. Cell-type annotation: The ability to interactively
annotate clusters/cell types

ASAP
2017

ASAP
2020

cellxgene Granatum iSEE SCope scSVA
Single Cell
Explorer

UCSC Cell
Browser

REFERENCE (14)
This
study

GitHub (45) (46) (17) (47) (48) GitHub

Csv/txt

Loom
CellRanger

.h5
h5ad

SCE

IN
P

U
T

 F
O

R
M

A
T

Seurat obj

Importing
user’s data

NO pre-
computed

resultsU
S

E
R

 D
A

T
A

Scalable
>1M cells

Hosted
server or

local install

Prog.
language

W
E

B
 S

E
R

V
E

R

Docker
Sharing
system

HCA Matrix
Service

Publish
project

Benchmarki
ng tools
Gene set

enrichment
Cell-type

annotation

P
O

R
T

A
L

 F
E

A
T

U
R

E
S

Interactive
cell filtering

*A remote website was also available but seemed to mostly serve as an example, since no job queuing system was implemented, the website became
inaccessible every time a step was launched
**SingleCellExplorer ‘Click here to Launch’ remote server was not functioning at the time of this paper

DATA AVAILABILITY

ASAP is freely available at https://asap.epfl.ch. It is an
open source software whose source code is deposited in
two GitHub repositories: (i) the R/Python/Java scripts are
deposited in https://github.com/DeplanckeLab/ASAP and
are available as a ready-to-use Docker container at https://
hub.docker.com/r/fabdavid/asap run/tags and (ii) the server
code is available at https://github.com/fabdavid/asap2 web.

ACKNOWLEDGEMENTS

We would like to thank the ASAP user community for pro-
viding great feedback and interesting discussions on how to
best evolve ASAP. We also thank Peter L. Hliva for techni-
cal help in the implementation of certain visualizations and
Alex R. Lederer who helped us reviewed this manuscript.

FUNDING

Chan Zuckerberg Initiative (CZI) grant for collaborative
computational tools [2018-182612 (5022)]; Precision Health
& related Technologies grant [PHRT-502]; Swiss National
Science Foundation (SNSF) project grant [310030 182655];
institutional support by the EPFL (Open Science Fund).
Funding for open access charge: Open Science fund from
the EPFL. The open access publication charge for this pa-
per has been waived by Oxford University Press – NAR Edi-
torial Board members are entitled to one free paper per year
in recognition of their work on behalf of the journal.
Conflict of interest statement. None declared.

REFERENCES
1. Wang,Y. and Navin,N.E. (2015) Advances and applications of

single-cell sequencing technologies. Mol. Cell, 58, 598–609.

https://asap.epfl.ch
https://github.com/DeplanckeLab/ASAP
https://hub.docker.com/r/fabdavid/asap_run/tags
https://github.com/fabdavid/asap2_web

Nucleic Acids Research, 2020, Vol. 48, Web Server issue W413

2. Hu,Y., An,Q., Sheu,K., Trejo,B., Fan,S. and Guo,Y. (2018) Single cell
multi-omics technology: methodology and application. Front. Cell
Dev. Biol., 6, 28.

3. Svensson,V., Vento-Tormo,R. and Teichmann,S.A. (2018)
Exponential scaling of single-cell RNA-seq in the past decade. Nat.
Protoc., 13, 599–604.

4. Hung,R.J., Hu,Y., Kirchner,R., Liu,Y., Xu,C., Comjean,A.,
Tattikota,S.G., Li,F., Song,W., Ho Sui,S. et al. (2020) A cell atlas of
the adult Drosophila midgut. PNAS, 117, 1514–1523.

5. Aizarani,N., Saviano,A., Sagar,Mailly, L., Durand,S., Herman,J.S.,
Pessaux,P., Baumert,T.F. and Grun,D. (2019) A human liver cell atlas
reveals heterogeneity and epithelial progenitors. Nature, 572,
199–204.

6. Cao,J., Packer,J.S., Ramani,V., Cusanovich,D.A., Huynh,C.,
Daza,R., Qiu,X., Lee,C., Furlan,S.N., Steemers,F.J. et al. (2017)
Comprehensive single-cell transcriptional profiling of a multicellular
organism. Science (New York, N.Y.), 357, 661–667.

7. Regev,A., Teichmann,S.A., Lander,E.S., Amit,I., Benoist,C.,
Birney,E., Bodenmiller,B., Campbell,P., Carninci,P., Clatworthy,M.
et al. (2017) The human cell atlas. eLife, 6, doi:10.7554/eLife.27041.

8. Han,X., Wang,R., Zhou,Y., Fei,L., Sun,H., Lai,S., Saadatpour,A.,
Zhou,Z., Chen,H., Ye,F. et al. (2018) Mapping the mouse cell atlas by
microwell-seq. Cell, 172, 1091–1107.

9. Schaum,N., Karkanias,J., Neff,N.F., May,A.P, Quake,S.R.,
Wyss-Coray,T., Darmanis,S., Batson,J., Botvinnik,O., Chen,M.B.
et al. (2018) Single-cell transcriptomics of 20 mouse organs creates a
Tabula Muris. Nature, 562, 367–372.

10. Luecken,M.D. and Theis,F.J. (2019) Current best practices in
single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol., 15, e8746.

11. Rostom,R., Svensson,V., Teichmann,S.A. and Kar,G. (2017)
Computational approaches for interpreting scRNA-seq data. FEBS
Lett., 591, 2213–2225.

12. Wolf,F.A., Angerer,P. and Theis,F.J. (2018) SCANPY: large-scale
single-cell gene expression data analysis. Genome Biol., 19, 15.

13. Cusanovich,D.A., Hill,A.J., Aghamirzaie,D., Daza,R.M.,
Pliner,H.A., Berletch,J.B., Filippova,G.N., Huang,X.,
Christiansen,L., DeWitt,W.S. et al. (2018) A single-cell atlas of in vivo
mammalian chromatin accessibility. Cell, 174, 1309–1324.

14. Gardeux,V., David,F.P.A., Shajkofci,A., Schwalie,P.C. and
Deplancke,B. (2017) ASAP: a web-based platform for the analysis
and interactive visualization of single-cell RNA-seq data.
Bioinformatics, 33, 3123–3125.

15. Boettiger,C. (2015) An introduction to Docker for reproducible
research. SIGOPS Oper. Syst. Rev., 49, 71–79.

16. Merkel,D. (2014) Docker: lightweight Linux containers for consistent
development and deployment. Linux J., 2014, Article 2.

17. Davie,K., Janssens,J., Koldere,D., De Waegeneer,M., Pech,U.,
Kreft,L., Aibar,S., Makhzami,S., Christiaens,V., Bravo
Gonzalez-Blas,C. et al. (2018) A single-cell transcriptome atlas of the
aging drosophila brain. Cell, 174, 982–998.

18. Sievert,C., Parmer,C., Hocking,T., Chamberlain,S., Ram,K.,
Corvellec,M. and Despouy,P. (2017) plotly: Create interactive web
graphics via ‘plotly. js’. R package version, 4, 110.

19. Ono,K., Demchak,B. and Ideker,T. (2014) Cytoscape tools for the
web age: D3.js and Cytoscape.js exporters [version 2; peer review: 2
approved]. F1000Research, 3, 143.

20. Lopes,C.T., Franz,M., Kazi,F., Donaldson,S.L., Morris,Q. and
Bader,G.D. (2010) Cytoscape Web: an interactive web-based network
browser. Bioinformatics, 26, 2347–2348.

21. Barrett,T., Troup,D.B., Wilhite,S.E., Ledoux,P., Rudnev,D.,
Evangelista,C., Kim,I.F., Soboleva,A., Tomashevsky,M.,
Marshall,K.A. et al. (2009) NCBI GEO: archive for high-throughput
functional genomic data. Nucleic Acids Res., 37, D885–D890.

22. Brazma,A., Parkinson,H., Sarkans,U., Shojatalab,M., Vilo,J.,
Abeygunawardena,N., Holloway,E., Kapushesky,M., Kemmeren,P.,
Lara,G.G. et al. (2003) ArrayExpress–a public repository for
microarray gene expression data at the EBI. Nucleic Acids Res., 31,
68–71.

23. Barrett,T., Clark,K., Gevorgyan,R., Gorelenkov,V., Gribov,E.,
Karsch-Mizrachi,I., Kimelman,M., Pruitt,K.D., Resenchuk,S.,
Tatusova,T. et al. (2012) BioProject and BioSample databases at
NCBI: facilitating capture and organization of metadata. Nucleic
Acids Res., 40, D57–D63.

24. Hubbard,T., Barker,D., Birney,E., Cameron,G., Chen,Y., Clark,L.,
Cox,T., Cuff,J., Curwen,V., Down,T. et al. (2002) The ensembl
genome database project. Nucleic Acids Res., 30, 38–41.

25. Ashburner,M., Ball,C.A., Blake,J.A., Botstein,D., Butler,H.,
Cherry,J.M., Davis,A.P., Dolinski,K., Dwight,S.S., Eppig,J.T. et al.
(2000) Gene ontology: tool for the unification of biology. The gene
ontology consortium. Nat. Genet., 25, 25–29.

26. Kanehisa,M. and Goto,S. (2000) KEGG: kyoto encyclopedia of
genes and genomes. Nucleic Acids Res., 28, 27–30.

27. Wishart,D.S., Knox,C., Guo,A.C., Cheng,D., Shrivastava,S., Tzur,D.,
Gautam,B. and Hassanali,M. (2008) DrugBank: a knowledgebase for
drugs, drug actions and drug targets. Nucleic Acids Res., 36,
D901–D906.

28. Franzen,O., Gan,L.M. and Bjorkegren,J.L.M. (2019) PanglaoDB: a
web server for exploration of mouse and human single-cell RNA
sequencing data. Database, 2019, doi:10.1093/database/baz046.

29. Zhang,X., Lan,Y., Xu,J., Quan,F., Zhao,E., Deng,C., Luo,T., Xu,L.,
Liao,G., Yan,M. et al. (2019) CellMarker: a manually curated
resource of cell markers in human and mouse. Nucleic Acids Res., 47,
D721–D728.

30. Diehl,A.D., Meehan,T.F., Bradford,Y.M., Brush,M.H.,
Dahdul,W.M., Dougall,D.S., He,Y., Osumi-Sutherland,D.,
Ruttenberg,A., Sarntivijai,S. et al. (2016) The cell ontology 2016:
enhanced content, modularization, and ontology interoperability. J.
Biomed. Semantics., 7, 44.

31. Andrews,T.S. and Hemberg,M. (2019) M3Drop: dropout-based
feature selection for scRNASeq. Bioinformatics, 35, 2865–2867.

32. Satija,R., Farrell,J.A., Gennert,D., Schier,A.F. and Regev,A. (2015)
Spatial reconstruction of single-cell gene expression data. Nat.
Biotechnol., 33, 495–502.

33. McInnes,L., Healy,J., Saul,N. and Großberger,L. (2018) Umap:
uniform manifold approximation and projection. J. Open Source
Softw., 3, 861.

34. Maaten,L.v.d and Hinton,G. (2008) Visualizing data using t-SNE. J.
Mach. Learn. Res., 9, 2579–2605.

35. Kiselev,V.Y., Kirschner,K., Schaub,M.T., Andrews,T., Yiu,A.,
Chandra,T., Natarajan,K.N., Reik,W., Barahona,M., Green,A.R.
et al. (2017) SC3: consensus clustering of single-cell RNA-seq data.
Nat. Methods, 14, 483–486.

36. Law,C.W., Chen,Y., Shi,W. and Smyth,G.K. (2014) voom: precision
weights unlock linear model analysis tools for RNA-seq read counts.
Genome Biol., 15, R29.

37. Love,M.I., Huber,W. and Anders,S. (2014) Moderated estimation of
fold change and dispersion for RNA-seq data with DESeq2. Genome
Biol., 15, 550.

38. Çakır,B., Prete,M., Huang,N., van Dongen,S., Pir,P. and Kiselev,V.Y.
(2020) Comparison of visualisation tools for single-cell RNAseq data.
bioRxiv doi: https://doi.org/10.1101/2020.01.24.918342, 07 February
2020, preprint: not peer reviewed.

39. Papatheodorou,I., Moreno,P., Manning,J., Fuentes,A.M., George,N.,
Fexova,S., Fonseca,N.A., Fullgrabe,A., Green,M., Huang,N. et al.
(2020) Expression Atlas update: from tissues to single cells. Nucleic
Acids Res., 48, D77–D83.

40. Pliner,H.A., Shendure,J. and Trapnell,C. (2019) Supervised
classification enables rapid annotation of cell atlases. Nat. Methods,
16, 983–986.

41. Hou,R., Denisenko,E. and Forrest,A.R.R. (2019) scMatch: a
single-cell gene expression profile annotation tool using reference
datasets. Bioinformatics, 35, 4688–4695.

42. Bravo Gonzalez-Blas,C., Minnoye,L., Papasokrati,D., Aibar,S.,
Hulselmans,G., Christiaens,V., Davie,K., Wouters,J. and Aerts,S.
(2019) cisTopic: cis-regulatory topic modeling on single-cell
ATAC-seq data. Nat. Methods, 16, 397–400.

43. Haghverdi,L., Lun,A.T.L., Morgan,M.D. and Marioni,J.C. (2018)
Batch effects in single-cell RNA-sequencing data are corrected by
matching mutual nearest neighbors. Nat. Biotechnol., 36, 421–427.

44. Butler,A., Hoffman,P., Smibert,P., Papalexi,E. and Satija,R. (2018)
Integrating single-cell transcriptomic data across different conditions,
technologies, and species. Nat. Biotechnol., 36, 411–420.

45. Zhu,X., Wolfgruber,T.K., Tasato,A., Arisdakessian,C., Garmire,D.G.
and Garmire,L.X. (2017) Granatum: a graphical single-cell RNA-Seq
analysis pipeline for genomics scientists. Genome Med, 9, 108.

https://www.doi.org/10.1101/2020.01.24.918342

W414 Nucleic Acids Research, 2020, Vol. 48, Web Server issue

46. Rue-Albrecht,K., Marini,F., Soneson,C. and Lun,A.T.L. (2018)
iSEE: Interactive SummarizedExperiment Explorer [version 1; peer
review: 3 approved]. F1000Research, 7, 741.

47. Tabaka,M., Gould,J. and Regev,A. (2019) scSVA: an interactive tool
for big data visualization and exploration in single-cell omics.
bioRxiv doi: https://doi.org/10.1101/512582, 06 January 2019,
preprint: not peer reviewed.

48. Feng,D., Whitehurst,C.E., Shan,D., Hill,J.D. and Yue,Y.G. (2019)
Single Cell Explorer, collaboration-driven tools to leverage large-scale
single cell RNA-seq data. BMC Genomics, 20, 676.

49. Goldman,M., Craft,B., Hastie,M., Repečka,K., Kamath,A.,
McDade,F., Rogers,D., Brooks,A.N., Zhu,J. and Haussler,D. (2019)
The UCSC Xena platform for public and private cancer genomics
data visualization and interpretation. bioRxiv doi:
https://doi.org/10.1101/326470, 05 March 2019, preprint: not peer
reviewed.

50. Brennecke,P., Anders,S., Kim,J.K., Kolodziejczyk,A.A., Zhang,X.,
Proserpio,V., Baying,B., Benes,V., Teichmann,S.A., Marioni,J.C. et al.
(2013) Accounting for technical noise in single-cell RNA-seq
experiments. Nat. Methods, 10, 1093–1095.

https://www.doi.org/10.1101/512582
https://www.doi.org/10.1101/326470

